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The problem of forced oscillations in an elastic rod subject to harmonic excitation when there is dry 

external friction present, varying as given by Coulomb’s law [l], is solved using approximate methods 

of expansion in a small parameter and harmonic linearization. 

L Consider a circular rod acted upon by a pressure that is constant along the length, loaded at one end 

with a torque which varies sinusoidally with frequency w. The equation of the dynamics of such a rod has 
the form 

(1.1) 

Here cp(x, t) is the angle of rotation of the cross-section with coordinate x, 4 is a coefficient which 
depends on the value of the uniformly distributed pressure on the rod and which characterizes the 
intensity of the torque, G is the shear modulus, and p is the density of the material. The primes and the 
dots denote partial derivatives with respect to the x coordinate and time r. 

Considering the steady oscillations, the solution of Eq. (1.1) will be sought in the form 

cp(x,t) = Al sin& +A2 sine2 

5, =ot+ax+qq, c2 =or-ax-cp2, a=o/c 

0.2) 

Solution (1.2) for constant A,, A,, q1 and (p2 satisfies Eq. (1.1) with zero right-hand side. We will 

construct the solution of Eq. (1.1) by the method of varying arbitrary constants. Assuming functions of 
the coordinates to be constant and imposing the following conditions on the derivatives 

A; sink, +A,& cost, +A; sinc2 -App2 cod,* = 0 (1.3) 

we substitute the required solution (1.2) into (1.1) and, solving the system simultaneously with condition 

(1.3), we obtain the following system of non-linear equations for findiug A,, 4, q1 and (p2 

A; =(-I)+’ 2 COS{j Signcp’, i = 1,2 (1.4) 

It is difficult to solve system (1.4) in general form. We will use the method of averaging. It was shown 
in [2, 31 that for weak damping in the case considered the oscillations can be assumed to be slowly varying 
with respect to both time and the coordinate. Hence, in the system of equations (1.4) we can carry out 
alternate averaging with respect to time and the coordinate. Introducing the function [3] 
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(1.5) 

we can write the averaged system (1.4) over a period of time as 

(1.6) 

In system (1.6) we average under the differential sign 

2n 
; hpp‘ldcar=4R, r=v,+w2 (1.7) 

R=[Af +A,2 +2A1AZcos$ Wj ‘Y+(Pj 

and change to dimensionless quantities. We will put OLT = y, Aj = 4qaj /(x~w~). Then, taking the averaging 
(1.7) into account, system (1.6) can be written in the form 

aj =(__l)j+l f $, ‘p; = W$ _!k 
J 2aj apj 

We average over the coordinate y= CLY. To do this in system (1.8) we determine the mean value (I) 

over a period with respect to the fast variable < = w1 = t+rz, where we assume that the quantities a, and ‘pi 
varies slowly. We obtain 

(4 = & 7 +I ,a2 &)a< = 
0 

2(y2JE(li), k2 = 4w2 

(al +a212 

(E(k) is the complete elliptic integral of the second kind). 

Substituting (I) into (1.8) we can write the averaged system in the form 

’ 1 
Llj =- (-1) i+t E+ 

x 
cp)=O, j=1,2 

(1.9) 

(1.10) 

(K(k) is the complete elliptic integral of the first kind). 
We expand the elliptic integrals in series in powers of E =(l-k’)/(l+k’) where k’= d(l-k2) [4], and 

we substitute these expansions into (l.lO), retaining terms of order not higher than E. We then obtain the 
system 

a;=)-$, a;=az/(bq), Cp;=Cp;=O (1.11) 

System (1.11) has the soiution 

aI =J/2y+C~, a2 =C,/o$‘+C,) K 7 91=c39 (P2=c4 

Then, the required solution (1.2) can be represented in the iuitiai variables in the form 

D=2, tgW= 
al sinyl ia2 sinyrz 

al cosWl +a2 cost;! 
(1.12) 



Torsional vibration in an elastic rod with external dry friction 943 

The solution obtained agrees well with the numerical solution of the averaged system (1.8). We will 

compare the results of the solution of the averaged system (1.8) and of system (1.11) after averaging over 
the coordinate and expanding in terms of the small parameter. 

To determine the constants of integration we will specify the boundary conditions. 

We will assume that one end of the rod (x = 0) is clamped, while a perturbing moment which varies 

sinusoidally with amplitude H and frequency w acts on the other end at n= L. For simplicity we will take 
the kinematic specification of the perturbation. The boundary conditions for the dimensionless relation- 
ships can be written in the form 

(p(O, f) = 0, y = 0 

cp(l, t) = h sin Wt, h=fffD, a.L=t 

tp(y,t)=alsin(wt+yfC3)+a2sin(ot-y-Cq) 

(1.13) 

We will assume that torsional vibrations propagate over the whole length of the rod. We will obtain the 

parameters of the system and the external action giving rise to these conditions after determining the 

constants of integration. 
The boundary conditions (1.13) lead to a system of equations for finding the constants of integration, 

from which we obtain 

Here h is the dimensionless amplitude of the perturbing action, E = olL is the dimensionless length of 

the rod, and a,, are the values of II, when y = 1. 
The last relation in (1.14) enables us to find the constant C,, and the remaining required constants of 

integration are expressed in terms of it. 
We obtain the following expression for the dimensionless amplitude of the displacements 

(1.15) 

where the approx~ate equality applies in view of the smallness of the ratio a, /a, = E. 

Figure 1 shows r(y) in dimensionless form. The continuous curves show the relations obtained from 
the approximate solution (1.12), and the dashed curves represent the results of numerical integration of 
system (1.8). The comparison was carried out for the same boundary conditions and a pressure that is 

constant over the length for several values of the amplitude h of the kinetic perturbing action on the end 

of the rod. It can be seen that averaging over the x coordinate and expansion in terms of the small 

parameter has only a slight effect on the form of the relationship between the amplitude and the 
coordinates compared with the results of numerical integration of the averaged system over time. 

2 The solution (1.12) holds for short rods, in which the vibrations propagate over the whole length of 
the rod. We will determine the parameters of the system and the external action which ensure these 
conditions. It can be seen from (1.14) that when the amplitude of the perturbing action h is reduced the 
value of the constant C, approaches zero. In the l~iting case when C, =O, the solution for the amplitude 
is given by a linear function. In this case 
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Fig. 1 

Zh=i, Hxo*/2=0c-~L (2.1) 

When b = olL, as follows from the approximate solution, the vibrations will not reach the end of the 

rod. The limit of propagation of the vibration field can be established from condition (2.1), namely 

L = Hmcl(2q)s L (2.2) 

We can then write for torsional vibrations of the cross sections of the rod for which condition (2.2) is 

satisfied 

q(~,t)= D(C, -j$ar)sin(or--dr-\rb) 

Solution (2.3) identically satisfies system (1.8) if its solution is found in the form (1.2) by putting 4 =O. 
The constants of integration C, and Y, = 0 are found from the boundary conditions at the perturbed end. 

For example, for the kinematic boundary conditions ~(0, t)= Hsinwt the constants of integration take the 
values DC, = H, Y0 = 0,and the region of propagation of the vibrations x. is found from the condition for 

the amplitude to be positive 

xe = 2C,a-’ = Hxocl(2q) 

As q -+ 0 the coordinate x, -+ m, which corresponds to the complete absence of damping. When the 
intensity of the torsional moment q increases, which depends on the forces of the distributed pressure, the 
vibrations are localized around the perturbed end of the rod. 
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